S1160 Service Manual

Summary: My windows, My world S1160—Lucid new window, good view of world. Lucid new window shows incoming calls and messages with flap folded. To answer the call or not is up to you; Advanced RF technology, power signal; Adopt military RF technology from European jets. Unique powerful ability of communication without dead angle; Wonderful DIY rings can bring you stage of personalities and the compile fair-sounding music through the keyboard shows your initiative and talent; Unique hands free function, giving owner more freedom, when engaging in work, Bird S1160 is the best choice to free your hands from holding mobile phone. Just slight push on button; Fun game, more choices in leisure time, internal fun game makes you more relax in your spare time.

Keywords: Streamlined, delicate and round, slim and lovely; transparent, advance, meticulous

Item	Feature	Comment
Dimensions	86*46*20.5mm	
Weight	85g(including battery)	
Battery Type	550mAh Li-Ion	
Ring	MINI rings	25 Embedded Tones
Type of LCD	TN B&W(112*64)	
Call time	1.5-2h	
Recharge time	1.5-2h	
Stand-by time	50—120h	Depends on the network conditions
SIM card type	Plug-In SIM 3V	
LCD Indicator	Green	
Keypad Indicator	Green	
Keypad	Number key: 10Shortcut key: 3Navigation Key: 3Side key:0Confirm Key: 2#/* Key	
Internal Phone Book	200	
Internal SMS Memory	10	
Redial List / Notebook	10	
Answer	Auto/any Key Answer	
Games Embedded	Yes	2
Free hands	Yes	

1. Performance

1.1 H/W Features

Table 1-1 H/W Features of S288

1.2 Technical Specification

Item	Description	Specification					
	-	GSM TX : (890~915Mhz)					
				R	X : (935	~960Mhz)
1	Frequency Band		EGSM	Т	X : (880	~890Mhz)
1				R	X : (92	5~935Mhz)
			DCS	Т	X:(171	10~1785M	hz)
				R	X : (180	05~1880M	hz)
2	Phase Error			RMS < 5	5 degrees	l	
2				Peak < 2	0 degrees	5	
3	Frequency Error			< 0.1	ppm		
4			1	GSM,	EGSM		
		Level	Power	Toler.	Level	Power	Toler
		5	33dBm	±2dBm	13	17dBm	±2dBm
		6	31dBm	± 3dBm	14	15 dBm	± 3dBm
		7	29dBm	±2dBm	15	13 dBm	± 3dBm
		8	27dBm	±2dBm	16	11 dBm	± 5dBm
		9	25dBm	±2dBm	17	9 dBm	± 5dBm
		10	23dBm	±2dBm	18	7 dBm	± 5dBm
		11	21dBm	±2dBm	19	5 dBm	± 5dBm
	Power Level	12	19dBm	±2dBm			
			1	DCS	1800		
		Level	Power	Toler.	Level	Power	Toler
		0	30dBm	±2dBm	8	14dBm	± 2dBm
		1	28dBm	±2dBm	9	12dBm	± 3dBm
		2	26dBm	±2dBm	10	10dBm	± 3dBm
		3	24dBm	±2dBm	11	8dBm	± 5dBm
		4	22dBm	±2dBm	12	6dBm	± 5dBm
		5	20dBm	± 2dBm	13	4dBm	± 5dBm
		6	18dBm	± 2dBm	14	2dBm	± 5dBm
		7	16dBm	±2dBm			
	Output RF Spectrum				EGSM		
	(due to modulation)	Offset from Carrier (kHz). 100				Max. dB	c
						+ 0.5	
			200			- 30	
		250				- 33	
			400			- 60	
			600 ~ 120			- 60	
			1200 ~ 18	00		-60	

		1000 200)0		()
		1800 ~ 300			- 63
		3000 ~ 600)0		- 65
		>=6000	5	<u> </u>	-71
			1	CS	
		Offset from Carrie	er (kHz).		Max. dBc
		100			+ 0.5
		200			- 30
		250			- 33
		400			- 60
		600 ~ 120	0		- 60
		1200 ~ 180	00		-60
		1800 ~ 300	00		- 65
		3000 ~ 600	00		- 65
		>=6000			-73
		Offset from Carri	er (kHz).	Ν	fax. (dBm)
	Output RF Spectrum	400			- 23
5	(due to switching transient)	600			- 26
		1200			- 32
		1800			- 36
6	Bit Error Ratio	GSM , EGSM , DCS			
0		BER (Class II) < 2.439% @-102 dBm			
7	RX Level Report Accuracy			3dB	
8	SLR		8 ±	3dB	
		Frequency (Hz)	Max.	(dB)	Min.(dB)
		100	-	12	/
		200	C		/
		300	C		- 12
9	Sending Response	1000	C		- 6
		2000	4		- 6
		3000	4		- 6
		3400	4		- 9
		4000	C		/
10	RLR		2 ± 3dB		
11	Receiving Response	Frequency (Hz)	Max.	(dB)	Min.(dB)
		100	-	12	/
		200	C		/
		300	2		- 7
		1000	*	:	- 5
		2000	C		- 5
		3000	2		- 5

3400	2	- 10		
4000	2			
Mean that Adopt a straight line in between 300 Hz				
and 1,000	Hz to be Max. level i	n the range.		

2. BB Brief and Trouble Shooting

2.1 Power On Signal Flow Chart

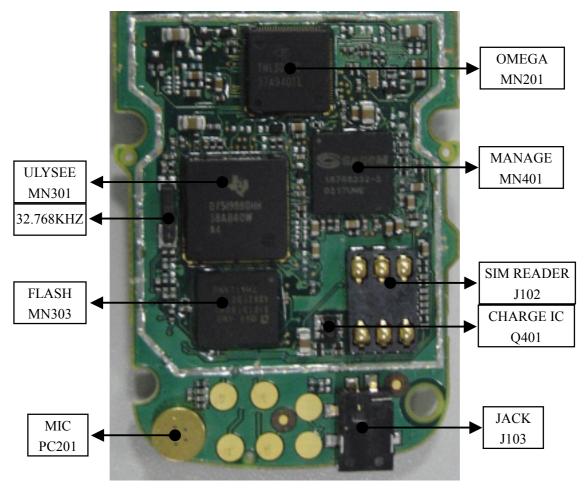


Figure 2-1 Distribution of Baseband Hardware

2.2 Technical Brief

2.2.1 ULYSEE (MN301)

HERCROM 200G2C035 is a chip implementing the digital base-band processes of a GSM/GPRS mobile phone. This chip combines a DSP sub-chip (LEAD2 CPU) with its program and data memories, a Micro-Controller core with emulation facilities (ARM7TDMIE), internal 8Kb of Boot ROM memory, 4M bit SRAM memory, a clock squarer cell, several compiled single-port or 2-ports RAM and CMOS gates. The application of this circuit is the management of the GSM/GPRS base-band processes through the GSM layer 1, 2 and 3 protocols as described in the ETSI standard with a specific attention to the power consumption in both GSM dedicated

Figure 2-2

and idle modes, and GPRS (class 12) capability. HERCROM200G1 architecture is based on two processor cores ARM7 and LEAD2 using the generic TI RHEA bus standard as interface with their associated application peripherals. ULYSEE block diagram is shown in Fig 2-3.

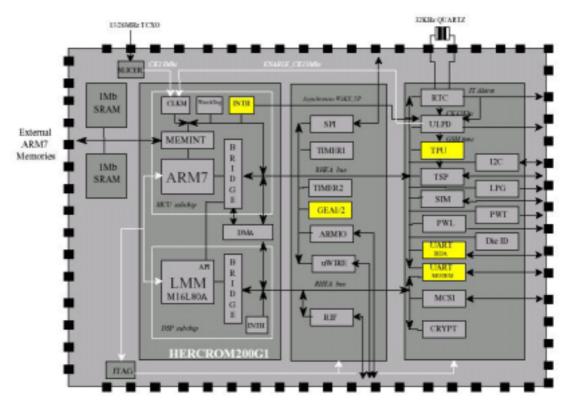


Figure 2-3 ULYSEE Internal Architecture

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A		GND	D14	VRMEM	VDD HERC	D4	GND	RXIR _IRDA	RX_ MODEM	GND	VRIO	VCXOEN		VSSO
в	GND	RWL	D15	D11	D8	VRMEM	D0		TX_ MODEM	TCLK	EMU0*	VDDHER C	OSC32K _OUT	IT WAKEUP
С		FLASH1		D12	D7	D5		TX_ IRDA	CTS_ MODEM	TDO		CLK32K	OSC32K _IN	GND
D	VRMEM			D13	D9	D3	D1	RX_ IRDA	DSR_ MODEM	TDI	BSCAN*	NRES PWRON	VDDRTC	VDDRTC
Е	VDD HERC	OEL		BLE	D10	D6	D2	RTS_ MODEM	TMS	NEMU1	VDDANG	GND	CLKTCXO	GND
F	GND	Al		FDPL	BHE					ONOFFL	VDDPLL	CLK IOTA	SIMCLK3	VSDIO3
G	VRMEM	A4	A5	A3	A2					SIM RST3	VRIO	CS HORUS	SIMIO3	GND
н	A6	A8	A7	A9	A10					TSPDI	DA		ENIOTA	EN
J	A11	A12	A13	A14	A18								MCLK	CLK
К	GND	A16	A15	A17	C2	R1		DOMIW	DAIRST	BDX		CLKX _SPI	TX	
L	A19	A20		IRQ4	C3					DAIOUT	BFSX	PUPLO2	RXON	VRIO
м	VDD HERC	GND	EXTIT	SIM _RNW	C5	R2	UDR	MCUEN0	DIUW	DAIIN	BDR	TXON	VFS	VREG
N	IBOOT*		RSLCD	C1	VRIO	R4	UDX	GND	CSLCD	DAICLK		VCK	VDX	VDD HERC
Р	FIQL	GND	RESET LCD	GND	C4	R3	VDD HERC		CKMIW	GND	ARMCLK	BFSR	GND	VDR

ULYSEE device pin configuration is shown in Table 2-1.

Pin nb	Pin name	Description	I/O
MICRO_V	VIRE INTERFACE:	5 pins.	
M9	DIUM	Data In	IN
K8	DOMIW	Data Out	OUT
Р9	CRMIW	Serial Clock	OUT
L9	SCS0	Not Connect	
N9	CSLCD	LCD Select	OUT
UART 16	C750 INTERFACE ((UART_IRDA): 5 pins	
D8	RX_IRDA	Receive Data	IN
C8	TX_IRDA	Transmit Data	OUT
A8	RXIR_IRDA	Not Application	
C7	TXIR_IRDA	Not Connect	
B8	SD_IRDA	Not Connect	
UART 16	C750 INTERFACE ((UART_MODEM): 5 pins	
A9	RXDI	Receive Data	IN
B9	TXDI	Transmit Data	OUT
D9	DSR_MODEM	Not Application	
E8	RTS_MODEM	Request To Send	OUT
C9	CTS_MODEM	Data Set Ready	IN
ARM MEN	MORY INTERFACE	: 49 pins.	
	A (20:1)	FLASH Address Bus Out	OUT
	D (15:0)	FLASH Data Bus	IN/OUT
	CS (4:1)	Not Connect	
C2	FLASH 1	FLASH Select	OUT
B2	RW	FLASH Memory Read (no write) signal.	OUT
F5	BHE	Ext RAM1/RAM2 Chip Select.	OUT
E4	BLE		OUT
E2	OEL	Flash Output Enable For Standby Mode	OUT
F4	FDP	Flash Deep Low-power	OUT
E3	FWE	Not Connect	
TPU PAR	ALLEL PORT: 12 p	pins.	
	TSPACT (11:0)	Synchronous Activation Signal (GSM bit accuracy)	OUT
TPU SER	IAL PORT: 7 pins.		
G12	TSPEN (3:0)	Configurable Enable Triggers	OUT
		(Edge/level, pos/neg)	
H11	TSPDO	Output Serial Data.	OUT
J14	CLK	Transfer Serial Clock	OUT
H10	TSPDI	Not Application	

ULYSEE device pin description is shown in Table 2-2.

ARM SE	RIAL PORT: 5 pins		
N7	UDX	Input Serial Data.	IN
M7	UDR	Output Serial Data.	OUT
L8	MCUEN (2)	Not Connect	
P8	MCUEN (1)	Not Connect	
M8	MCUEN0	Configurable Enable Triggers	OUT
		(edge/level, positive/negative)	
JTAG PO	ORT: 7 pins.		•
B10	TCLK	Test Clock.	IN
E9	TMS	Test Mode Select.	IN
C10	TDO	Test Data Output.	OUT
D10	TDI	Test Data Input.	IN
D11	NBSCAN	Boundary-scan Selection	IN
E10	NEMU1	Test Emulation pin 1.	IN/OUT
B11	NEMU0	Test Emulation pin 0.	IN/OUT
MISCEL	LANEOUS: 11 pins	•	
D12	NRESPWRON	Chip Power-On Reset	IN
N (2)	NRESET_OUT	Not Connect	
M2	IDDQ	Not Application	
E13	CLKTCXO	VCTXO Input Clock (=13MHz).	IN
F12	CLKIOTA	CLKM Output Clock (=13MHz).	OUT
C13	OSC32K_IN	Input Component Signal of 32KHz Quartz.	IN
B13	OSC32K_OUT	Output Component Signal of 32KHz Quartz.	OUT
C12	CLK32K	32KHz Oscillator Square Waveform Output	OUT
M3	EXT_IT	External Interrupt For ARM	IN
P1	FIQL	Fast External Interrupt For ARM	IN
P11	ARMCLK	Not Application	
POWER	MANAGEMENT: 4	pins.	
B14	ITWAKEUP	Wake-up Interrupt of Real Time Clock.	OUT
A12	VCXOEN	External TCXO Enable	OUT
A13	PFEN	Not Connect	
F10	ONOFF	Regulators Activity	IN
VOICE I	BAND INTERFACE	: 4 pins.	
M13	VFS	Transmit/Receive Synchrony.	IN
N13	VDX	Receive Data.	IN
P14	VDR	Transmit Data.	OUT
N12	VCK	Transmit/Receive Clock.	IN
MCSI IN	TERFACE: 4 pins.		
L10	DAIOUT	Not Application	
M10	DAIIN	Not Application	

N10	DAICLK	Not Application	
K9	DAIRST	Not Application	
BASE B	BAND INTERFAC		
L11	BFSX	Receive Synchrony.	IN
P11	BCLKR	Not Application	
K10	BDX	Receive Data.	IN
M11	BDR	Transmit Data.	OUT
N11	BCLKX	Not Connect	
P12	BFSR	Transmit Synchrony.	OUT
SIM IN	TERFACE: 5 pins.		
G10	SIMRST3	SIM Reset.	OUT
F13	SIMCLK3	Output Clock.	OUT
G13	SIMIO3	Input Output Signal.	IN/OUT
F14	VSDIO3	Power Control.	OUT
G11	VRIO	Card Presence Detection	IN

Table 2-2 ULYSEE DEVICE Pin Description

2.2.2 OMEGA (MN201)

The TWL3014 device includes a complete set of baseband functions that perform the interface and processing of the following voice signals, the baseband in-phase (I) and quadrature (Q) signals, which support both the single-slot and multi-slot mode, associated auxiliary RF control features, supply voltage regulation, battery charging control and switch ON/OFF system analysis. The TWL3014 device interfaces with the DBB device through a digital baseband serial port (BSP) and a voice band serial port (VSP). The signal ports communicate with a DSP core (LEAD). A microcontroller serial port (USP) communicates with the microcontroller

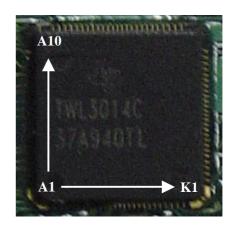


Figure 2-4

core and a time serial port (TSP) communicates with the time processing unit (TPU) for real-time control. OMEGA BLOCK DIAGRAM is shown as in Fig 2-5.

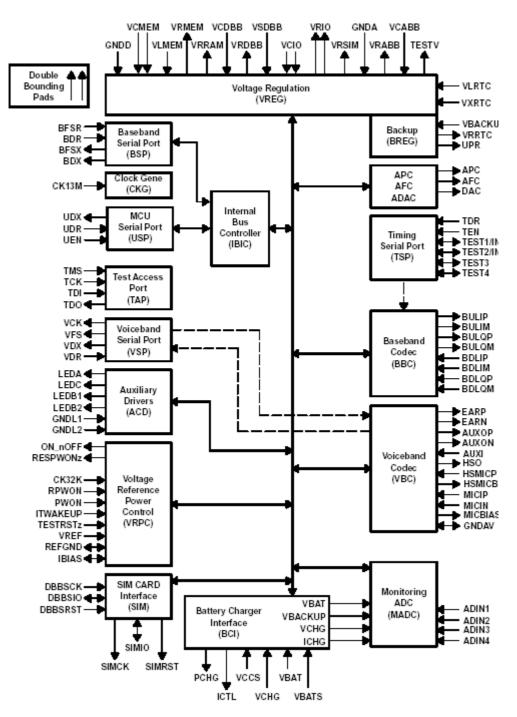


Figure 2-5 TWL3014 Functional Block Diagram

This section provides the terminal descriptions for the TWL3014 device. Fig 2–6 shows the signal assigned to each terminal in the package. Table 2–3 shows the terminal functions for the TWL3014 device.

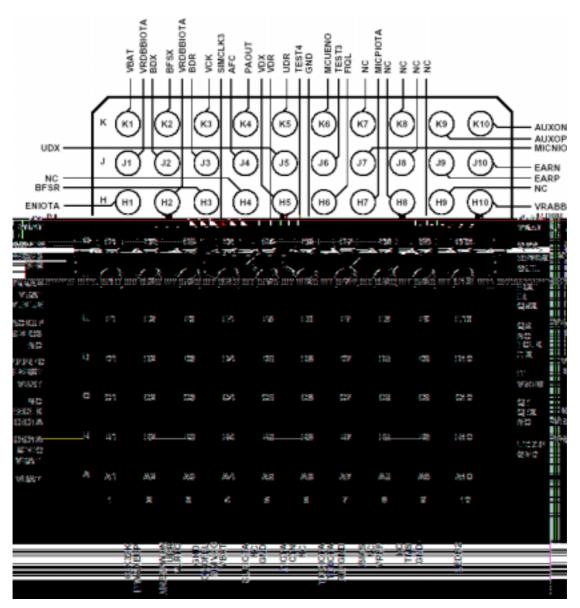


Figure2-6 signal assigned of OMEGA

PIN nb	PIN name	Description	I/O
B6	CTN	Monitoring ADC Input 1 and Battery Temperature	I/O
		Current Source	
A6	NC	Not Connect	
C7	NC	Not Connect	
C6	VMES	Monitoring ADC Input	Ι
J4	AFC	Automatic Frequency Control DAC Output	0
K4	APC	Automatic Power Control DAC Output	0
G7	AUXIN	Auxiliary Speech Signal Input	Ι
K10	AUXON	Auxiliary Speech Signal Output (-)	0

K9	AUXOP	Auxiliary Speech Signal Output (+)	0
F10	IRX	In-phase Input (I–) Baseband Codec Downlink	Ι
F9	IR	In-phase Input (I+) Baseband Codec Downlink	Ι
E9	QRX	Quadrature Input (Q–) Baseband Codec Downlink	Ι
E10	QR	Quadrature Input (Q+) Baseband Codec Downlink	Ι
J3	BDR	Baseband Serial Port Receive Data	Ι
J2	BDX	Baseband Serial Port Transmit Data	0
Н3	BFSR	Baseband Serial Port Receive Frame Synchronization	Ι
K2	BFSX	Baseband Serial Port Transmit Frame Synchronization	0
D10	ITX	In-phase Output (I–) Baseband Codec Uplink	0
D9	IT	In-phase Output (I+) Baseband Codec Uplink	0
C9	QTX	Quadrature Output (Q-) Baseband Codec Uplink	0
C10	QT	Quadrature Output (Q+) Baseband Codec Uplink	0
E4	CLKIOTA	13-MHz Master Clock Input and BSP/TSP/USP Clock	Ι
E2	CLK32K	32-kHz Clock Input	Ι
H4	NC	Not Connect	
F4	SIMCLK3	SIM Card Shifters Clock Input	Ι
E5	SIMIO3	SIM Card Shifters Data	I/O
G4	SIMRST3	SIM Card Shifters Reset Input	Ι
J10	EARN	Earphone Amplifier Output (–)	0
J9	EARP	Earphone Amplifier Output (+)	0
G10	GND	Ground	
G6	GND	Ground	
A3	GND	Ground	
B9	GND	Ground	
A9	GND	Ground	
K8	NC	Not Connect	
K7	NC	Not Connect	
H9	NC	Not Connect	
B7	IBIAS	Bias Current Reference Resistor (100 k Ω)	I/O
D6	NC	Not Connect	
H6	FIQL	Fast Interrupt / Test Pad 1 (Default is INT1)	I/O
E6	ITIOTA	Microcontroller Interrupt / Test Pad 2 (Default is INT2)	I/O
D2	ITWAKEUP	Real-time Wake-up Input	Ι
B8	NC	Not Connect	
B10	LEDB1	Connected to LEDB2	
A10	LEDB2	Connected to LEDB1	
C8	NC	Not Connect	
J8	NC	Not Connect	
H7	MICPIOTA	Microphone Amplifier Input (-)	Ι

J7	MICNIO	Microphone Amplifier Input (+)	Ι
E3	ONOFFL	Digital Baseband Reset (@ each switch on)	0
B5	NC	No Connect	
F8	OUIL	On Button Input	Ι
A7	REFGND	Reference Voltage Ground	I/O
D3	NRESPWON	Digital Baseband Power-on Reset (First Battery Plug)	0
F7	RPWRC	Remote Power-on (other than button)	Ι
C4	SIMCLK	SIM Card Shifters Clock Output (1.8 V/3 V)	0
B3	SIMIO	SIM Card Shifters Data	I/O
D4	SIMRST	SIM Card Shifters Reset Output	0
D8	TCLK	Scan Test Clock	Ι
D7	TDIIOTA	Scan Path Input	Ι
E7	TDOIOTA	Scan Path Output	0
G3	DA	Time Serial Port Input	Ι
H1	ENIOTA	Time Serial Port Enable	Ι
J6	TEST3	Special Test I/O Terminals	I/O
F6	TEST4	Special Test I/O Terminals	I/O
H8	NC	Not Connect	
G8	NC	Not Connect	
E8	TMS	JTAG Test Mode Select	Ι
K5	UDR	Microcontroller Serial Port Receive Data	Ι
J5	UDX	Microcontroller Serial Port Transmit Data	0
K6	MCUENO	Microcontroller Serial Port Enable	Ι
C2	UPR	Uninterrupted Power Rail Output	0
E1	VBACKUP	Backup Battery Input	I/O
A4	VBAT	Battery Voltage Sense Input	I/O
C5	VBAT	Battery Voltage Sense	
G9	VBAT	Input of Voltage Regulator VRABB	I/O
D5	NC	Not Connect	Ι
K1	VBAT	Input of Voltage Regulator VRDBB	I/O
A5	GND	Ground	
A2	VBAT	Input 1 of Voltage Regulators VRIO and VRSIM	I/O
A1	VBAT	Input 2 of Voltage Regulators VRIO and VRSIM	I/O
K3	VCK	Voiceband Serial Port Clock	0
G2	VBAT	Input of Voltage Regulator VRMEM	I/O
F2	VBAT	Input of Voltage Regulator VRRAM	I/O
F5	VDR	Voiceband Serial Port Receive Data	Ι
H5	VDX	Voiceband Serial Port Transmit Data	0
G5	VFS	Voiceband Serial Port Frame Synchronization	0
F3	VLMEM	Select Output Voltage of VRMEM	Ι

C3	VLRTC	Select Output Voltage of VRRTC and VRDBB	Ι
H10	VRABB	Voltage Regulator VRABB Output	0
J1	VRDBBIOTA	Voltage Regulator VRDBB Output	0
A8	NC	Not Connect	I/O
B2	VRIOIOTA	Voltage Regulator VRIO Output	0
B1	VRIOIOTA	Voltage Regulator VRIO Output	0
G1	VRMEM	Voltage Regulator VRMEM Output	0
F1	VRRAM	Not Application	0
D1	VDDRTC	Voltage Regulator VRRTC Output	0
B4	SIMVCC	Voltage Regulator VRSIM Output	0
H2	VRDBBIOTA	Voltage Regulator VRDBB Input Feedback	Ι
C1	NC	Not Connect	

Table 2-3 TWL3014 Pin Descriptions

The TWL3014 voltage regulation block consists of seven sub blocks. Several low-dropout (LDO) regulators perform linear voltage regulation. These regulators supply power to internal analog and digital circuits, to the DBB processor, and to external memory. TABLE 2-4 shown OMEGA volt supply and descriptions. Fig 2-7 shown the test points of OMEGA supply.

Power supply	Test point	Supply to	TEST POINT	
VRDBBIOTA	C208	VDDHERC	C307	
VKDDDIOTA	C208	VDDPLLHERC	C303	
VDDRTC	C217 C205	VDDRTC	Q402, 2#	
VDDKIC	C217, C305	VDDRTC	C305	
VRMEM	C215			
	C220	VDDANGHERC	C312	
VRIOIOTA		VRIO	R315	
			R302	
VRRAM	No Ameliadian			
VRABB		No Application		

Table 2-4 OMEGA voltage supply and descriptions

The first LDO (VRDBBIOTA) is a programmable regulator that generates the supply voltage (1.5V) for the core of the DBB processor and inside PLL circuit

The second LDO (VDDRTC) is a programmable regulator that generates the supply voltage (1.6V) for the 32-kHz oscillator located in the DBB device. Meanwhile supply to Q402, 2# logic high for OMEGA transmit digital baseband power-on reset to Power IC. The main or backup battery supplies VDDRTC.

The third LDO (VRMEM) is a programmable regulator that generates the supply voltages (2.8V) for external memories (typically flash memories) and DBB memory interface I/Os.

The fourth LDO (VRIOIOTA) generates the supply voltage (2.8V) for the digital core, analog functions and I/Os of the TWL3014 device.

The fifth LDO (VRSIM) is programmable regulator that generates the supply voltages (2.9V) for SIM card and SIM card drivers.

The sixth LDO (VRRAM) and the seventh LDO (VRABB) is not application in S1160.

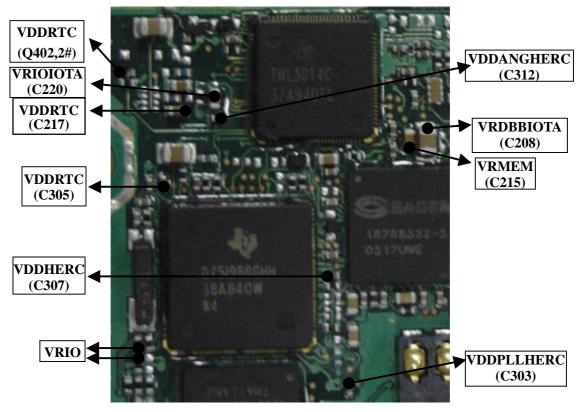


Figure 2-7 Test point of OMEGA supply

2.2.3 Manager IC (MN401)

HORUS is a chip implementing the analog base-band processes of a GSM/GPRS mobile phone peripheral circuit. HORUS integrates power management (battery and charger) functions, audio functions, power I/Os, radio interface I/Os and others facilities tailored and adapted to SAGEM mobile phones specific architecture. Fig 2–9 shows the signal assigned to each terminal in the package. Table 2-5 shown the device pins description.

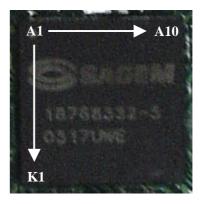


Figure 2-8

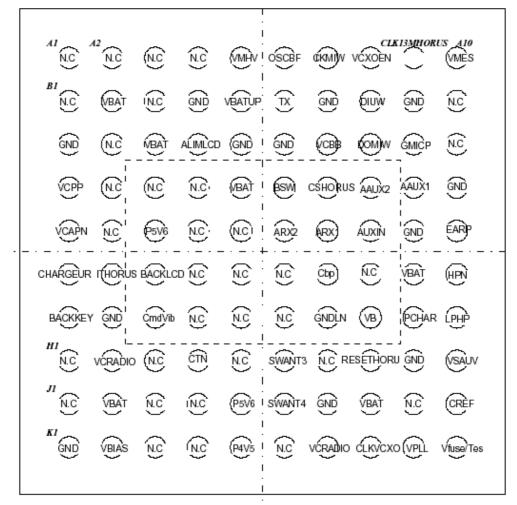
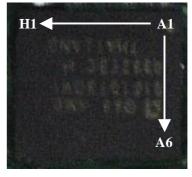


Figure 2-9 HORUS Terminal Assignments

PIN nb	PIN name	Description	I/0		
POWER	POWER MANAGEMENT				
	VBAT	Power supply source	Ι		
	GND	Power supply ground			
A5	VMHV	VBACKUP and ALIMLCD control	0		
B5	VBACKUP	Backup area supply	I/O		
C4	ALIMLCD	LCD interface supply	0		
D1	VCAPP	Filter Output	0		
E1	VCAPN	Filter Input I			
E3	P5V6	Voltage doubler output	0		
J5	P5V6	Interior RADIO LDO supply	0		
F1	CHARGEUR	Charger measurement bridge	Ι		
G8	VB	Charge control device base current control O			
G9	PCHAR	Charge control shunt regulator supply	Ι		
H8	RESETHORUS	Reset input/output	I/O		


			_
H10	VSAUV	Power management and low power modes supply	0
J5	P5V6	Interior RADIO LDO input	Ι
K5	P4V5	MIC Bias voltage	0
K7	VCRADIO	RF supply	0
K9	VPLL	Radio VCO supply	0
RADIO I	INTERFACE	-	
B6	TX	TX radio control input	Ι
D6	BSW	Band radio control input	Ι
H6	SWANT3	Radio switch control	0
J6	SWANT4	Radio switch control	0
REFERE	ENCES		
J10	CREF	Integrated reference output (external filtering)	0
K2	VBIAS	Reference current resistor pin	Current
			output
K10	Vfuse/Tes	Fuse prog. I/O	I/O
AUDIO			
C9	GMICP	Audio converter negative input	Ι
D8	AAUX2	Auxiliary audio path negative input to power amplifier	Ι
D9	AAUX1	Auxiliary audio path positive input to power amplifier	
E6	ARX2	Main power audio path negative input to power I	
		amplifier	
E7	ARX1	Main power audio path positive input to power I	
		amplifier	
E8	AUXIN	Audio converter positive output	0
E10	EARP	Power Audio amp. high/mean power positive output	0
F10	HPN	Power Audio amp. high power negative output	0
F7	Cbp	Power audio amp. bypass capacitor	0
G10	LPHPN	Power Audio amp. mean power amp. Negative output	0
POWER	I/O		
F3	BACKLCD	LCD Backlight current source output Open-drain	0
G1	BACKKEY	KEY Backlight current source output Open-drain	0
G3	Cmdvib	Vibrator current source output Open-drain	0
H2	VCRADIO	RF supply Open-drain	0
H4	CTN	CTN current source detect	0
	INTERFACE		L
A7	CKMIW	Serial interface clock input	Ι
		-	
B8	DIUM	Serial interface data output (ULYSEE)	0
B8 C7		Serial interface data output (ULYSEE) General purpose I/O	0 I/O
	DIUM VCBB DOMIW	Serial interface data output (ULYSEE) General purpose I/O Serial interface data input	

F2	ITHORUS	CPU interrupt	0		
ECO M	IODE (CLOCKS)	•			
A6	OSCBF	32k digital square wave output	0		
A8	VCXOEN	Radio VCO supply control digital input	Ι		
A9	CLK13MHOR	13MHz square wave output	0		
	US				
K8	CLKVCXO	13MHz analog clock input from VCO to low swing	Ι		
		trigger			
MEASU	MEASURMENT				
A10	VMES	Measurement bridges output	0		

Table 2-5 Manager IC Terminal Functions

2.2.4 FLASH (MN303)

The Am29DL161D is 16megabit, 2.8 volt flash memory devices. The device is designed to be programmed in-system with the 2.8 volt Vcc supply by OMEGA (MN201)

20 Addresses	
15 Data Inputs/Outputs	
Data Input/Output, word mode	
Chip Enable	
Output Enable	
Write Enable	
Hardware Write Protect	
Hardware Reset Pin, Active Low	
3.0 volt-only single power supply	
Device Ground	
Not Connected	

Table 2-6 FLASH Device Pins Description

		48-Ball	Fine-pitc	h BGA(T	op View)		
(A6)	(B6)	(06)	(D6)	(E6)	(F6)	(G6)	(H6)
A14	A13	A15	A16	A17	VRMEM	D15	GND
(A5)	(B5)	(C5)	(D5)	(E5)	(F5)	(G5)	(H5)
A10	A9	A11	A12	D7	D14	D13	D6
(A4)	(B4)	(64)	(D4)	(E4)	(F4)	(G4)	(H4)
RWL	FDPL	NC	A20	D5	D12	VRMEM	D4
(A3) NC	(B3) WP#	(C3) A19		(E3) D2	(F3) D10	(G3) D11	(H3) D3
(A2)	(B2)	(C2)	(D2)	(E2)	(F2)	(G2)	(H2)
A8	A18	A7	A6	D0	D8	D9	D1
(A1)	(B1)	(C1)	(D1)	(E1)	(F1)	(G1)	(HI)
A4	A5	A3	A2	A1	FLASH1	OE#	GND

Figure 2-11 FLASH Terminal Assignments

2.3 ULYSEE to OMEGA connections

ULYSEE		OMEGA			
Pin name	Pin nb	Pin name	Pin nb		
TSP Serial Interface					
DA	H11	DA	G3		
ENIOTA	H13	ENIOTA	H1		
RIF/BSP Serial Interfa	ace				
BFSX	L11	BFSX	K2		
BDX	K10	BDX	J2		
BFSR	P12	BFSR	Н3		
BDR	M11	BDR	J3		
ARM SPI/USP Serial	Interface				
UDX	N7	UDX	J5		
UDR	M7	UDR	K5		
MCUENO	M8	MCUENO	K6		
LEAD SPI/VSP	LEAD SPI/VSP				
VCK	N12	VCK	K3		
VDR	P14	VDR	F5		

VDX	N13	VDX	H5
VFS	M13	VFS	G5
SIM Interface			
SIMCLK3	F13	SIMCLK3	F4
SIMIO3	G13	SIMIO3	E5
SIMRST3	G10	SIMRST3	G4
JTAG Interface			
TDOCALYPSO	C10	TDIIOTA	D7
TMS	E9	TMS	E8
TCLK	B10	TCLK	D8
TDICALYPSO	D10		
		TDOIOTA	E7
CLOCKS	·	·	·
CLK32K	C12	CLK32K	E2
CLKIOTA	F12	CLKIOTA	E4
INTERRUPTS	I		
EXTIT	M3	ITIOTA	E6
FIQL	P1	FIQL	H6
POWER MGMT	1		
ITWAKEUP	B14	ITWAKEUP	D2
ONOFFL	F10	ONOFFL	E3
NRESPWRON	D12	NRESPWRON	D3
POWER SUPPLIE	S		
VDDHERC	E1	VRDBBIOTA	J1
	M1		
	P7		
	N14		Н2
	B12		
	A5		
VDD-RTC	D14	VRRTC	D1
VDD-RTC	D13	VRRTC	D1
VRMEN	D1	VRMEM	G1
	G1		
	B6		
	A4		
VRIO	N5	VRIOIOTA	B1
	L14		
VDDS2	A11		B2
VDDPLL	F11	VRDBBIOTA	J1
VDDANG	E11	VRIOIOTA	B1
, , , , , , , , , , , , , , , , , , , ,	1.1.1	,10010111	D1

2.3.1 TSP serial interface

The TSP serial interface allows the serial transmission of baseband control windows for the POWER IC BBCODEC. It is managed through a TPU scenario hence it allows GSM quarter bit resolution and a precise positioning of CODEC commands among the GSM TDMA frame.

2.3.2 RIF/BSP serial interface

This interface is dedicated to the UL and DL transmission of I/Q samples between the DSP and the BBCODEC and to POWER IC registers access.

On the UL path the DSP sends to the CODEC the burst bits to be modulated while on the DL path it receives non demodulated I/Q samples.

Write access to POWER IC register is done using the same data format as the UL. Main functions executed are:

- APC parameters programmation (levels, delays, ramp coefficients)
- AFC
- Voice CODEC control

Register accesses could be considered synchronized to the TDMA frame as the DSP receives commands on TDMA frame start boundary.

2.3.3 ARM SPI/USP serial interface

This interface is dedicated to OMEGA read and writes register accesses from ULYSEE. Through this link is possible to access all POWER IC registered; hence this port is used to configure and to manage the status of each block of POWER IC device. Also ADC result of conversion can be read through this interface.

2.3.4 LEAD SPI/VSP serial interface

This interface allows voice samples exchanges in DL and UL direction between the DSP and the POWER IC Voice Band CODEC. POWER IC VSP is the master port in the transmission.

2.3.5 SIM interface

The SIM Card digital interface in ABB insures the translation of logic levels between DBB and SIM Card, for the transmission of 3 different signals:

- A clock derived from a clock elaborated in DBB, to the SIM -Card (SIMCLK3 SIMCLK)
- A reset signal from DBB to the SIM Card (SIMRST3 SIMRST),
- A serial data from DBB to the SIM Card (SIMIO3 SIMIO).

2.3.6 JTAG interface

The test access port (TAP) meets JTAG testability standard (IEEE Std1131.1-1990). TAP allows public instructions set of JTAG standard and also private instructions to configure the device in special modes for test or debug purpose.

2.3.7 CLOCKS

POWER IC device receives two clocks from CPU:

A slow clock **CLK32K_OUT** used by the DBB as reference clock for low power modes (back-up, deep-sleep). The ABB adopt this clock as the VRPC synchronous state machine clock and as reference clock when fast clock is not present.

A fast clock CLK13M_OUT used by the DBB and ABB as reference clock for all modules.

2.3.8 INTERRUPTS

POWER IC device is able to generate two kinds of interrupts:

- An emergency interrupt connected to CPU **FIQL** signaling the detection of a low battery voltage.
- An event detection interrupt connected to CPU EXTIT signaling:
 - Falling or rising edge at RPWON pin.
 - Falling edge at PWON pin.
 - Termination of an analog to digital conversion.
 - Charger plug.

2.3.9 POWER MGMNT

Those three signals controls system status and system status transitions, they are supplied on the VRRTC power domain.

The **NRESPWRON** signal is generated by the ABB, it is the reset of the power split part of the DBB chip. It is active only one time (as long any kind of supply, Backup battery or Main battery is present) at the first start of the mobile. Split power logic will provide to propagate this signal as global reset as soon as power supply will be present on the rest of the chip.

The **ONOFFL** signal is generated by the ABB, it is the ASIC modules, ARM, LMM, reset. It is at logical low level each time the system is switched off. Also this signal is managed by the split power logic and propagated to the rest of the circuit.

High logical level is asserted on this signal when the POWER IC power management has completed the enabling sequence of all LDO's meaning that the system is correctly supplied and that SW can be correctly executed.

At this time the MCU SW starts from its reset state.

The **ITWAKEUP** signal is generated by the DBB and it is used to wake up the system from low power modes (backup, deep sleep). It is built as a combination of all the interrupt request that are allowed to awake the CPU ULPD module and the RTC alarm.

2.4 SIM interface

The SIM_RST signal is SIM card async/sync reset. The SIM_CLK signal is SIM card reference clock. The SIM_IO signal is SIM card bidirectional data line. The SIM_VCC signal is SIM card power activation. S1160 only enables 3V SIM operation.

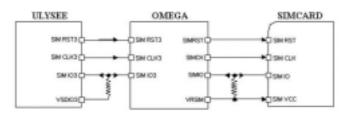


Figure 2-12 SIM Interface

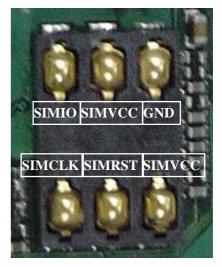
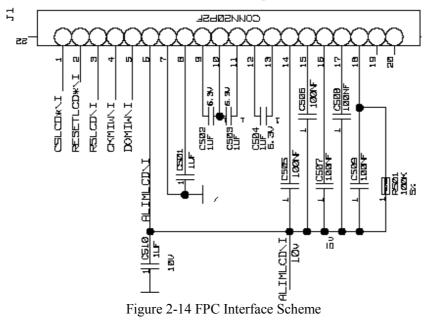



Figure 2-13

2.5 Display & FPC Interface

LCD module is connected to main board with 18 pins FPC.

Pin nb	Name	Description
1	CSLCD	LCD module select signal
2	RESETLCD	LCD module reset signal
3	RSLCD	Mobile in wait mode (wait or AT instruction)
4	CKMIW	Serial interface clock output
5	DOMIW	Serial interface data output (bidirectional)
6	ALIMLCD	LCD module interface supply
7	GND	Ground
8-13		Output filtering or no application
14-18	ALIMLCD	

Table 2-7 FPC Interface Spec

LCD control signal wave shown as below:

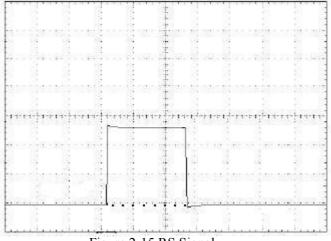


Figure 2-15 RS Signal

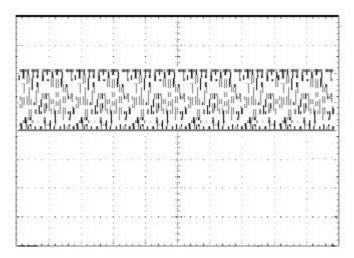


Figure 2-16 DOMIW Signal

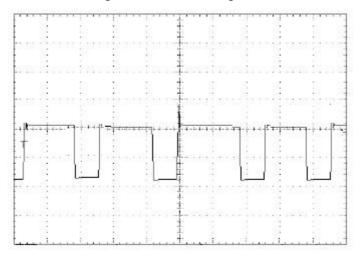


Figure 2-17 CS signal

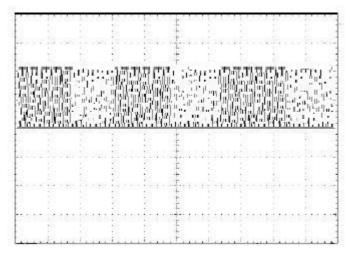


Figure 2-18 CKMIW signal

2.6 Audio Signal Processing & Interface

Baseband CODEC is composed of baseband uplink path (BUL) and baseband downlink path (BDL).

Uplink

The uplink path amplifies the audio signal from MIC and converts this analog signal to digital signal and then transmit it to DBB Chip. This transmitted signal is reformed to fit in GSM Frame format and delivered to RF Chip.

The microphone is soldered to the main PCB. The uplink signal is passed to MICNIOTA and MICPIOTA pins of OMEGA. MICBIAS is 2.5V level. The MICBIAS voltage is supplied from Manager IC (MN401).

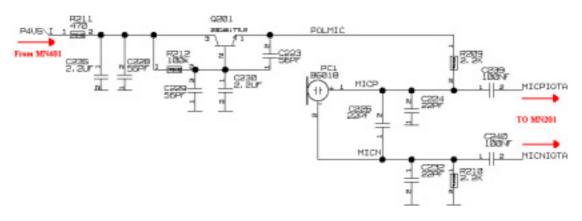


Figure 2-19 Audio Signal From MIC to OMEGA Scheme

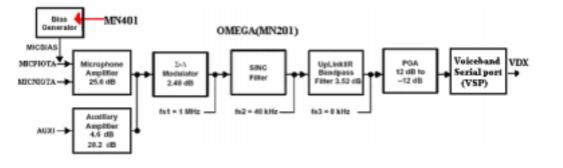


Figure 2-20 Audio Signal Baseband Codec Block Diagram

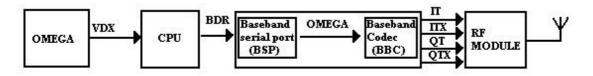
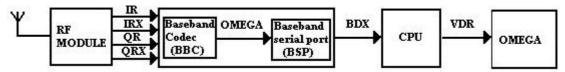
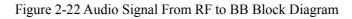




Figure 2-21 Audio Signal From BB to RF Block Diagram

Downlink

Downlink process is opposite procedure of Uplink. Namely, it performs GMSK demodulation with input analog I&Q signal from RF section, and then transmit it to DSP of DBB chip with 270KHz data rate through BSP.

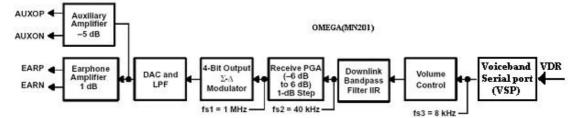


Figure 2-23 Audio Signal Processed Internal OMEGA

S1160 has two receiving model, the normal model and the freehand model.

1. Normal Model:

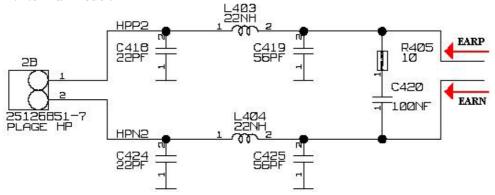


Figure 2-24 Audio Signal From OMEGA to Speaker Scheme

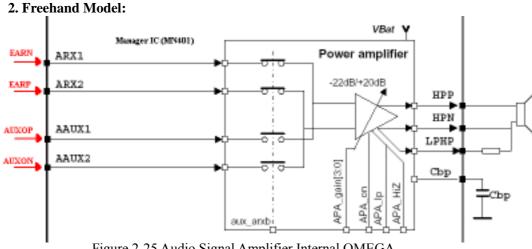


Figure 2-25 Audio Signal Amplifier Internal OMEGA

2.7 Keyboards

DBB supports 18 Key and Switch-ON Key is directly connected to ABB:

- R (4:1) input pins for row lines
- C (5:1) output pins for column lines

If a key button of the keyboard matrix is pressed, the corresponding row and column lines are shorted together. To allow a key press detection, all input pins (R) are pulled up to VCC and all output pins (C) are driving a low level. Any action on a button will generate an interrupt to the controller which will, as answer, scan the column lines with the sequence describe below. This sequence is written to allow detection of simultaneous press actions on several key buttons.

	C1	C2	C3	C4	C5
R1		[4]	[7]	[8]	[9]
R2	[]	[]	[5]	[OFF]	[6]
R3		[•]	[*]	[0]	[#]
R4	[]	[]	[1]	[2]	[3]

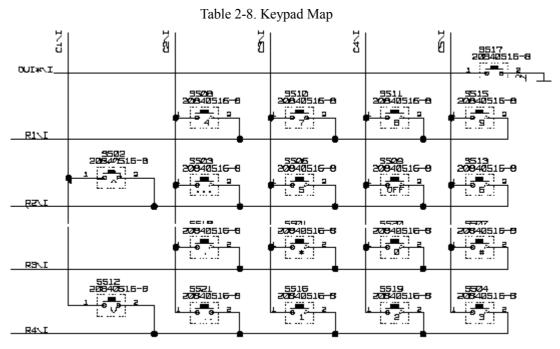


Figure 2-26 Keyboard Connection Scheme

2.8 Charge self-supply

Charger functions extract power from *VCH* pin to be self supplied from the charger independently from *VBAT*. In case of shunt regulator architecture, external RC network filters *CHARGEUR* to provide primary supply to the shunt regulator. A power-on-reset function could be attached to the shunt regulator. Fig 2-26 shown charge scheme. Fig 2-27 shown charge architecture.

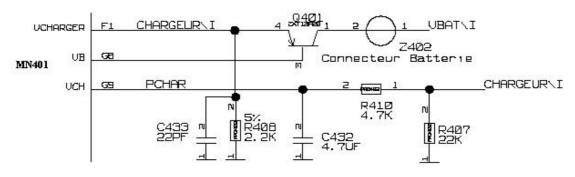


Figure 2-27 Charge Scheme

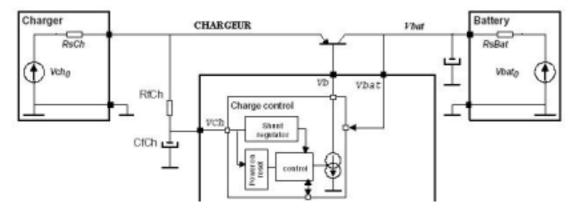
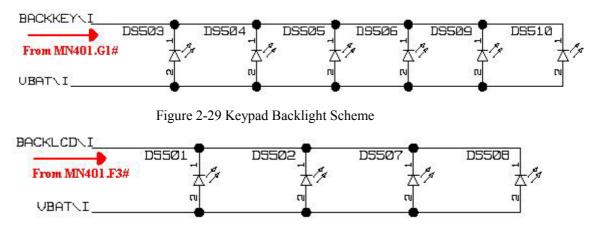
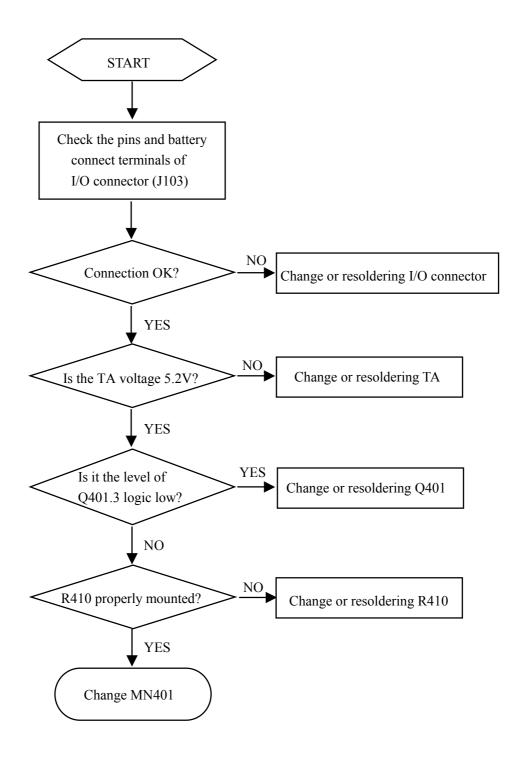
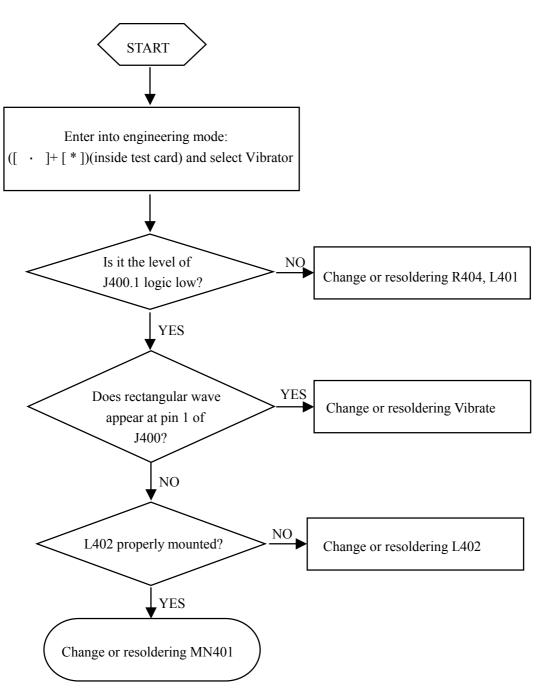


Figure 2-28 Charge architecture

2.9 Keypad and LCD backlight Illumination

There are 6 deep green LEDs for keypad and 4 deep green LEDs for LCD back-light in Main Board respectively, which are driven by "BACKKEY" and "BACKLCD" from Manger IC (MN401).


Figure 2-30 LCD Backlight Scheme

2.10 Trouble Shooting

(a) CHARGE TROUBLE

(b) VIB TROUBLE

3. RF TECHNICAL BRIEF

3.1 RF Components

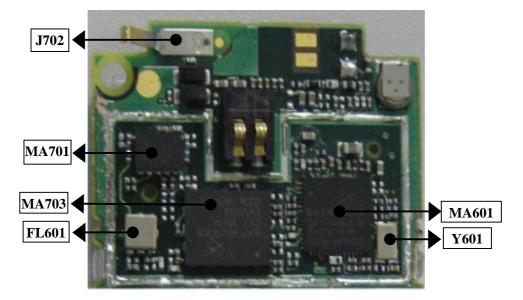


Figure 3-1 RF Components

Reference Name		Description	
J702	Antenna Connector	Connect the Antenna with the PCB	
MA701	Antenna Switch	Switch E-GSM or DCS, Switch RX or TX	
MA703	PAM	Amplifier TX Power	
FL601	SAW Filter	Filter mottle frequency	
Y601	26MHZ Oscillator	Output steady 26MHZ frequency	
MA (01	Turning	RX signal amplifier, down frequency, demodulation	
MA601	Transceiver IC	TX signal modulation, check phase, up frequency	

Table 3-1 RF Components Description

3.2 RF Configuration Block Diagram

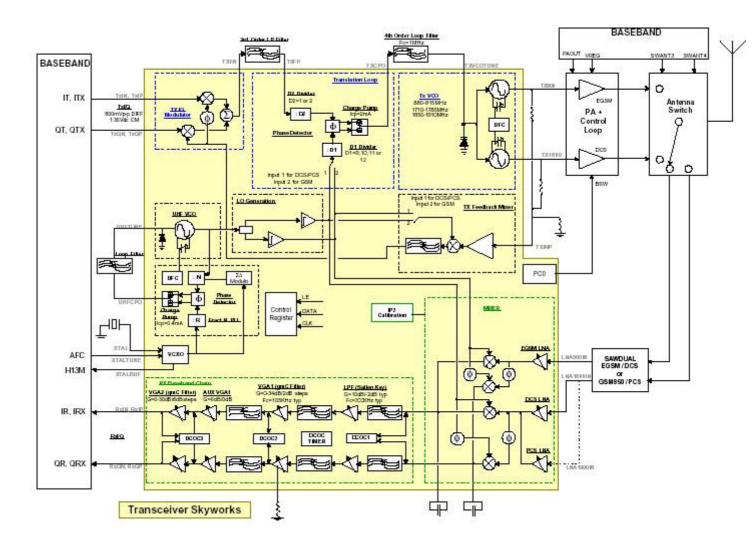


Figure 3-2 RF Configuration Block Diagram

3.3 Receiver

The Receive part consists of a dual band(E-GSM & DCS) antenna switch (MA701), a dual band RF SAW filter(FL601) and a transceiver IC(MA601). All active circuits for a complete receiver chain are contained in the transceiver IC (MA601). The RF received signals (GSM 925MHz ~ 960MHz, DCS 1805MHz ~ 1880MHz) are input via the antenna (J702). An antenna matching circuit is between the antenna and the dual band antenna switch. The Receiver Chart is shown in Fig 3-3.

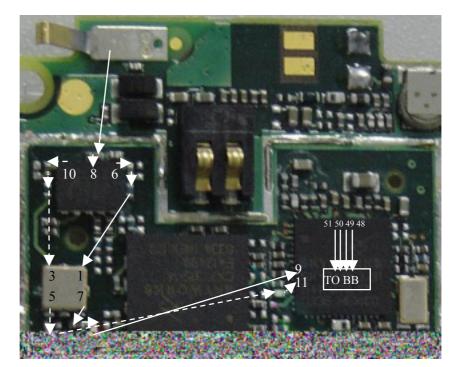


Figure 3-3 Receive Signal Flow Chart

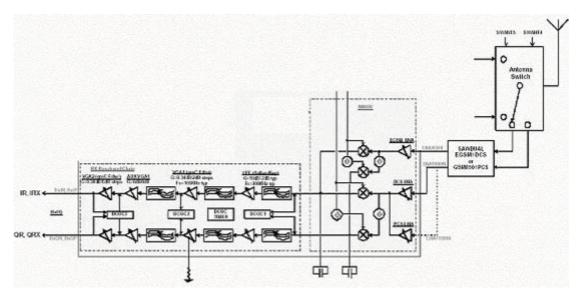


Figure 3-4 RX Path Block Diagram

3.3.1 Antenna Switch

VC1, VC2 that are connected to SWANT3, SWANT4 to switch either TX or RX path on. When the RX path is turned on, the received RF signal passed through the dual band antenna switch, this process is the same both E-GSM and DCS.

SWITCH MODE	SWANT3 (VC1)	SWANT4 (VC2)
EGSM_TX	1	0
DCS_TX	0	1
EGSM_RX	0	0
DCS_RX	0	0

Table3-2 The logic and current is given below

$\mathbf{\hat{\mathbf{b}}}$	RXDCS	GND	ANT	GND	RXGSM
	GND				
	TXDCS	VCRADIO	SWANT4	SWANT3	TXGSM

Pin number	Pin name	Description
1	TXDCS	DCS_TX INPUT 1710-1785MHZ
2	VCRADIO	Power Supply
3	SWANT4	Control Input
4	SWANT3	Control Input
5	TXGSM	EGSM_TX INPUT 880-915MHZ
6	RXGSM	EGSM_RX OUTPUT 935-960MHZ
7,9,11	GND	Ground
8	ANT	Connect Antenna Switch Module with antenna matching circuit
10	RXDCS	DCS_RX OUTPUT 1805-1880MHZ

Table 3-3. Antenna Switch Device PIN Description

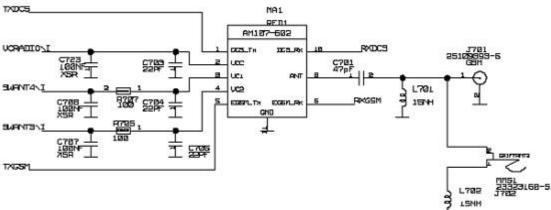
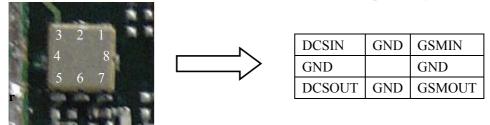



Figure 3-5 RF Front-end circuit Diagram

3.3.2 SAW Filter

The received RF signal which has passed through the dual band antenna switch, is filtered by the RF integrated SAW filter (FL601) for EGSM and DCS better stop band rejection.

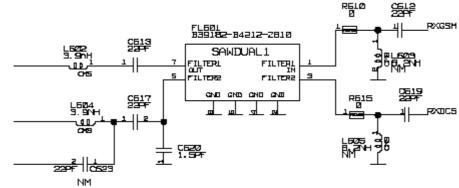


Figure 3-6 RF SAW Filter Circuit diagram

3.3.3 LNA and Quadrature Demodulator

The MA601 chip receive path implements a direct down-conversion architecture, so the received RF signal is directly converted to base band I and Q signal by the transceiver IC (IF frequency is 0 Hz), which contains three Integrated Low Noise Amplifiers (LNAs), a quadrature demodulator, tunable receiver baseband filters, Voltage gain amplifier (VGA) and DC-offset correction sequencer.

Three separate LNAs (for PCS no used) are integrated to address different bands of operation. These LNAs have separate single-ended inputs. The gain is switchable between high (15 dB typical) and low(-5 dB GSM, -7 dB DCS typical) settings. The LNA outputs feed into a quadrature demodulator that down converts the RF signals directly to baseband.

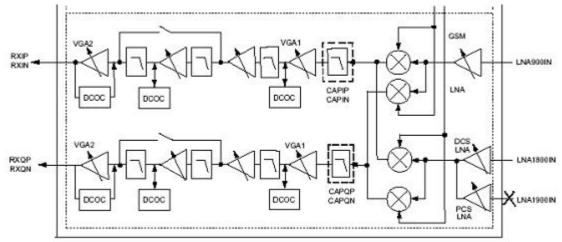


Figure 3-7 MA601 RX Internal Architecture

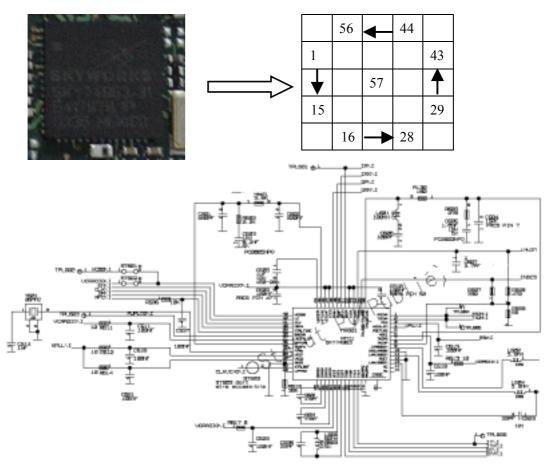


Figure 3-8 RF Transceiver IC circuit Diagram

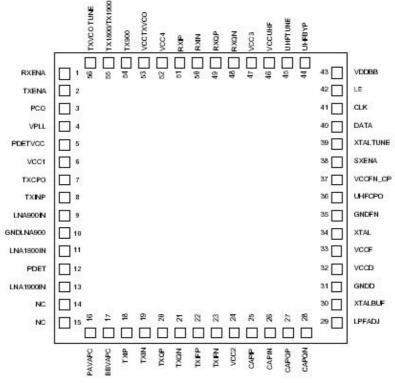
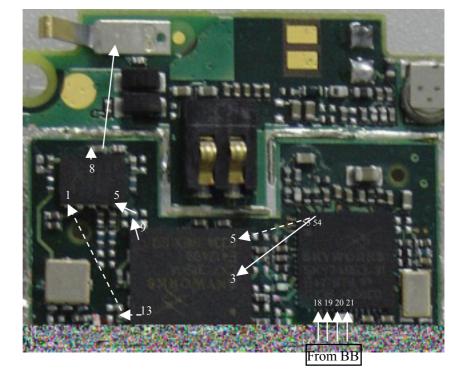


Figure 3-9 Transceiver IC Terminal Assignments


Pin nb	Pin name	Description
1	RXON	Receiver enable input
2	TXON	Transmitter enable input
3	BSW	Bi-directional band select
4	VPLL	VCXO enable pin
5	PDETVCC	No connect
6	VCRADIO	LNA and TX charge pump supply
7	ТХСРО	Translational loop charge pump output
8	TXINP	Translational loop feedback input
9	LNA900IN	Low band LNA input for GSM850,EGSM900
10	GNDLNA900	Low band LNA emitter ground
11	LNA1800IN	DCS LNA input
12	PDET	ground
13	LNA1900IN	PCS LNA input
14	NC	No connect
15	NC	No connect
16	PAVAPC	No connect
17	BBVAPC	Ground
18	IT	TX I baseband input positive
19	ITX	TX I baseband input negative
20	QT	TX Q baseband input positive
21	QTX	TX Q baseband input negative
22	TXFP	TX IF filter output positive
23	TXFN	TX IF filter output negative
24	VCRADIO	RX mixer and TX loop supply
25	CAPIP	Capacitor filter I positive
26	CAPIN	Capacitor filter I negative
27	CAPQP	Capacitor filter Q positive
28	CAPQN	Capacitor filter Q negative
29	LPFADJ	LPF frequency setting resistor
30	XTALBUF	Crystal oscillator buffer output
31	GNDD	Synthesizer digital ground
32	VPLL	Synthesizer digital supply
33	VPLL	Synthesizer analog supply and crystal
33	VFLL	oscillator supply
34	XTAL	Crystal input
35	GNDFN	Synthesizer analog ground
36	UHFCPO	Synthesizer charge pump output
37	VCCFN_CP	Synthesizer charge pump supply
38	SXENA	Synthesizer enable input

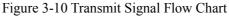

39	XTALTUNE	Crystal oscillator varactor control
40	DA	Serial bus data input
41	CLK	Serial bus clock input
42	EN	Serial bus latch enable input
43	VDDBB	Digital CMOS supply
44	UHFBYP	Bypass capacitor for UHF VCO
45	UHFTUNE	UHF VCO control input
46	VCRADIO	UHF VCO supply
47	VCRADIO	LO chain supply
48	QRX	Receiver output Q negative
49	QR	Receiver output Q positive
50	IRX	Receiver output I negative
51	IR	Receiver output I positive
52	VCRADIO	Baseband supply
53	VCRADIO	Transmit VCO supply
54	INGSM	Low band transmit VCO
55	INDCS	DCS and PCS transmit VCO output
56	TXVCOTUNE	Transmit VCO control input
57	CASE	GND

Table 3-4 Transceiver IC Device PIN Descriptions

3.4 Transmit

The TX path is a frequency translation loop (TX OPLL) architecture consisting of an I/Q modulator, integrated high power VCOs, offset mixer, programmable divider, PFD, and charge pump. TX OPLL designed to perform frequency up-conversion with high output spectral purity. The TXVCO output frequencies into PAM for amplifier signal power is suit BS (base station) and into MA601 for TX local frequency. The PAM outputs pass the antenna connector via an integrated dual band antenna switch module, and then transmit the signal to the BS.

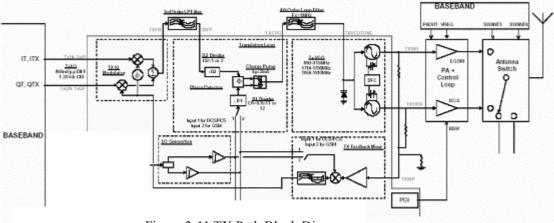


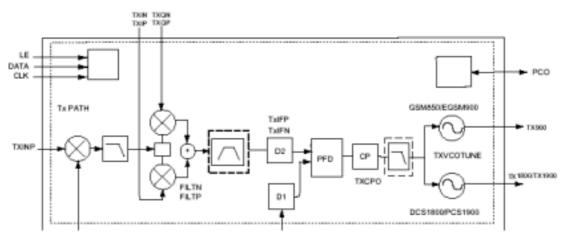
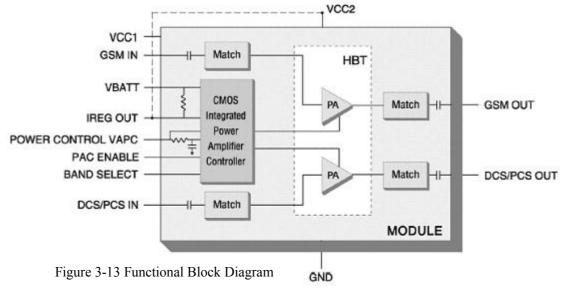
Figure 3-11 TX Path Block Diagram

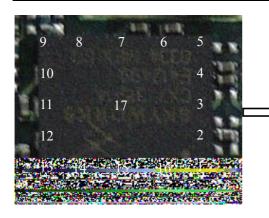
3.4.1 Modulator and TX OPLL

EGSM Signal Flow

DCS Signal Flow

The TX I & Q signals that from BB analog chipset are put into the MA601 TX modulator, where they are modulated. The TX I & Q signals from BB analog chipset are fed to the MA601 TX modulator, where they are modulated onto either a TX of 880-915 MHz (for EGSM-TX) or 1710-1785 MHz (for DCS-TX). The BB software is able to cancel out differential DC offsets in the I/Q BB signals caused by imperfections in the D/A converters. The TX loop contains a phase-frequency detector, charge pump, mixer, programmable dividers, and high power TX Voltage Controlled Oscillators (TX VCO) with no external tank required. The TX VCO has a frequency band from 880 MHz to 915 MHz (for EGSM) and from 1710MHZ to 1785MHZ (for DCS). Two on-chip transmit VCOs are designed to meet EGSM900, DCS1800 requirements.


Figure 3-12 MA601 TX Internal Architecture

3.4.2 Power Amplifier Module

The Power Amplifier Module (PAM) is consists of separate GSM850/900 PA and DCS1800/PCS1900 PA blocks, impedance-matching circuitry for 500hm, Input and output impedances and a Power Amplifier Control (PAC) block with an internal current-sense resistor. The custom CMOS Integrated Circuit provides the internal PAC function and interface circuitry. One Heterojunction Bipolar Transistor (HBT) PA block supports the GSM850/900 bands and the other supports the DCS1800 and PCS1900 bands. RF input and output ports of the PAM are internally matched to 500hm to reduce the number of external components for a quad-band design. Extremely low leakage current (2.5μ A, typical) of the dual PA module maximizes handset standby time. The PAM also contains band-select switching circuitry to select GSM (logic 0) or DCS/PCS (logic 1) as determined from the Band Select signal. In the Functional Block Diagram below, the **BS (band select)** pin selects the PA output (DCS/PCS OUT or GSM850/900 OUT) and the **Analog Power Control (VAPC)** controls the level of output power.

VBATT and **IREG OUT** pins connect to an internal current-sense resistor and interface to an integrated power amplifier control (PAC) function, which is insensitive to variations in temperature, power supply, and process. The **PAC ENABLE** input allows initial turn-on of PAC circuitry to minimize battery drain.

<u>ک</u>	GSM OUT	GND	GND	VBAT	INDCS
	GND				BSW
	VCC2		GND		INGSM
	GND				VREG
Ē	DCS OUT	GND	PAOUT	IREG OUT	VBAT

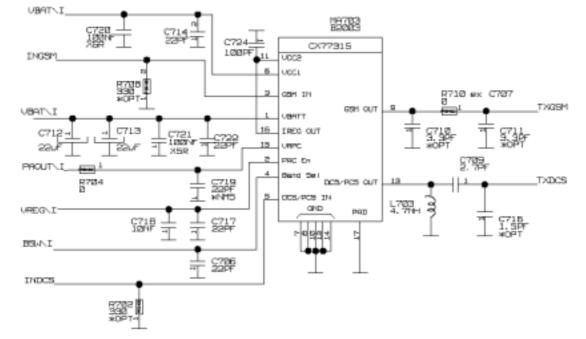


Figure 3-14 RF PAM Circuit Diagram

Pin nb	Pin name	Description
1	VBAT	Battery input to high side of internal sense resistor
2	VREG	Closed loop PAC mode CMOS enable
3	INGSM	RF input 880 – 915 MHz
4	BSW	Band Select
5	INDCS	RF input 1710 – 1785 MHz
6	VBAT	VCC (to GSM 1st stage, DCS 1st and 2nd stages, PAC)
7	GND	RF and DC Ground
8	GND	RF and DC Ground
9	GSM OUT	RF Output 880 – 915 MHz
10	GND	RF and DC Ground
11	VCC2	VCC (to GSM and DCS Final stages)
12	GND	RF and DC Ground

13	DCS OUT	RF Output 1710 – 1785 MHz
14	GND	RF and DC Ground
15	PAOUT	Power Control Bias Voltage
16	IREG OUT	Regulated output current (Externally connected to pin 11)

Table 3-5 PAM Device Pins Description

3.4.3 Dual Band Antenna Switch

When the TX path is turned on, the transmit RF signal passed through the dual band antenna switch, the process is the same as both E-GSM and DCS.

3.5 Synthesizer

The SKY7493 (MA601) is a transceiver IC suitable for E-GSM and DCS. So, synthesizers use a number of techniques to improve lock time, making them well suited to E-GSM and DCS. The fine synthesizer resolution allows direct compensation or adjustment for reference frequency errors. The SKY7493 includes two OPLL which operation offers low phase noise and fast settling times. One is Franc N.PLL (RF PLL), which can phase-lock the local oscillator used in both transmit and receive paths to a precision frequency reference input. Another is TX PLL, which output frequency for E-GSM from 880MHZ to 915MHZ or for DCS from 1710MHZ to 1785MHZ.

- The fractional-N synthesizer RF PLL consists of the following:
 - UHF VCO
 - High frequency prescaler
 - N-divider with a sigma-delta modulator
 - Reference divider
 - Fast phase frequency detector
 - Charge pump

A crystal oscillator output frequency reference to RF PLL. The UHF VCO with external tank circuits is necessary for both transmitting and receiving operation. For receiving operation, the RF synthesizers of the SKY7493 to extract from a modulated carrier wave to I and Q signals. For transmitting operation, the UHF VCO output accurately frequency is for TX Feedback Mixer and TX OPLL. Output frequency of the UHF VCO is set by the factional number, prescaler and counter. A buffer amplifier follows the UHF VCO. The purpose of the buffer is to give reverse isolation and prevent any frequency pulling of the VCO when the transceiver is powered UP and DOWN..

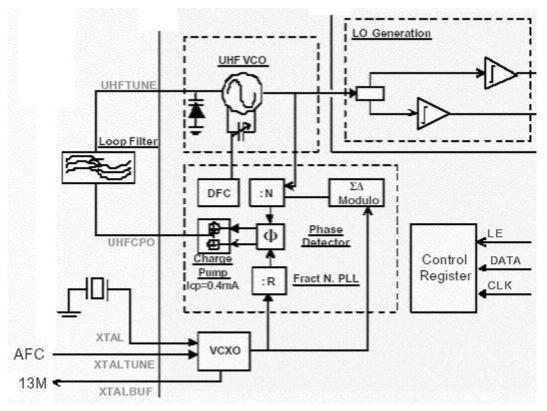
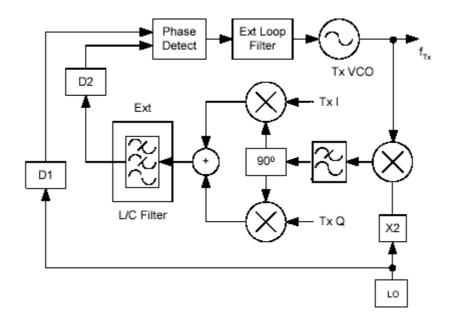
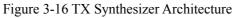




Figure 3-15 RF Synthesizer Architecture

- The fractional-N synthesizer TX PLL consists of the following:
 - TX VCO
 - TX Feedback Mixer,
 - TX I/Q Modulator
 - D2 Divider with external LP filter
 - Phase Detector
 - Internal reference D1 Divider
 - Charger pump with external LP filter

The transmit loop takes baseband analog I/Q signals and modulates them with the mixed product of transmitter output and LO signals. The TX VCO with external tank circuits is necessary for transmitting operation only. The TX VCO has a frequency band from 880 MHz to 915 MHz (for E-GSM) and from 1710MHZ to 1785MHZ (for DCS). Output frequency of TX VCO is settled by prescaler and counter also. The TX VCO is also followed by a buffer amplifier, which is to give reverse isolation and prevent any frequency pulling of the VCO when the transceiver is powered UP and DOWN.

• A fixed reference frequency is generated by a reference divider from the external applied 26MHZ crystal oscillator and the interior applied VCXO circuit.

3.6 3-wire Serial Interface

3-wire serial interface controls the transceiver and synthesizer. The receiver gains control, as well as the division ratios and charge pump currents in the synthesizer and transmitter, can be programmed by using 24-bit words. These 24-bit words are programmed using the 3-wire input signals **CLK**, **DATA**, and **LE**. To ensure that the data stays latched in power down mode, pin 43 (VDDBB) must be continuously supplied with voltage. This pin is provided for the digital sections to allow power supply operation compatible with digital baseband devices.

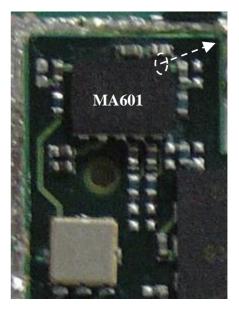

Pin name	me Pin number Description			
CLK	41	Serial clock input to the AM601		
DATA	40	Serial data input to the AM601		
LE	42	Input latches the serial data transferred to the AM601		

Table 3-4 3-wire Interface Pin Description

3.7 RF Trouble Shooting

When the mobile phone appears the following troubles, we will doubt about the RF part problem first. Such as: No network retrieval, Good RSSI but no SVC, Signal weak, Network unsteady, Freeze while call or search network, Can not dial out, Power off while call etc. According to experience and the GSM network principle, we should judge whether the problem

is due to receiver or transmit part problems. When the mobile phone appears to No network retrieval, which is roots from receiver thoroughfare. We can replace the receiver part flimsy parts, such as dual band antenna switch, RF SAW filter, transceiver IC, but the method will cause waste of spare parts and time. Certainly, we can find the receive thoroughfare problem by "false antenna method" judge (Add a soldering or a lead in receiver thoroughfare). In actual maintain, for the sake of judging the trouble points, we can use "1/2 approach method". For example, a S1160 mobile phone is no network retrieval, we can add the false antenna in the MA601.6# (RXGSM) (shown as Fig 3-17) . If the signal recovers, we can make sure the trouble is between the antenna and the dual band antenna switch (includes the dual band antenna switch). If

no signal recovers, the trouble is between the dual band antennas switch and the transceiver IC(includes transceiver IC).

When the mobile appears to be Good RSSI but no SVC, Network unsteady, Freeze while call or search network, Power off while call. We can doubt about the mobile transmit part problem. We can replace the transmit thoroughfare flimsy parts, such as PAM, transceiver IC, antenna switch. Specially, we resoldering or replace the PAM.

When the mobile appears Freezing while call or search for network and Power off while call. We can check the power on current of the mobile phone to judge whether the PAM is working normal. When switching on the mobile phone, it starts execute its power on program, searches the network and adjust the transmit power level. During the procedure, the mobile phone working current will rise. If no rise or only with little rise, we can generally judge that the PAM has some problem. In the same way, when the mobile phone makes a call, its working current also will be rising, if it did not, the most possibility is the PAM.

Hereinabove, I tell about some experience about maintains. But, that way may be waste of time and materials. We can used the equipment to

Transmit part Standalone test.

3.7.1. Equipment List

Equipment for test	Type/model	Brand
SAGEM Test Kit		Bird
S1160 Specific Test Clamp		Bird
PC (for test Software Installation)		
PC Series Date Link		
Multimeter		
Oscilloscope with probe	HM1004, HM2005 etc	
Spectrum Analyzer with High	CMU200, RS3131A etc	
Frequency Probe		

3.7.2. Spectrum Analyzer setting (make 62ch for example)

Item		Preferences
Freq		902.4MHZ
SPAN		200KHZ
SWEEP		50ms
BW	RBW	1MHZ
VBW		10KHZ
LEVEL		0dB

3.7.3. Test Software

(a) Software installation

Unzip the reglman.zip service software that supplied by BIRD. Execute SETUP.exe in reglman folder. Default setup, only a process need attention, as Fig 3-18.

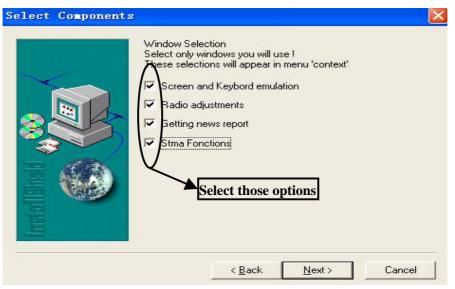


Figure 3-18 Select Components

(b) Common properties of Service Software

When you execute this program, you'll see the below user interface window titled Reglman V 2.0.0.7 in Fig 3-19.

The Reglman Tool has three test context, but the main function is "Functions". The "STMA" option is used to test mobile function circuit, such as LCD, VIB, software version etc. The "function" option is used to burn in emission or reception The "CTS55" option isn't used in maintain mobile phone.

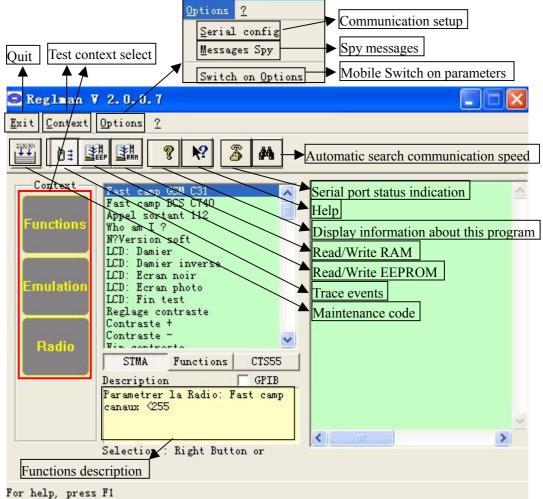
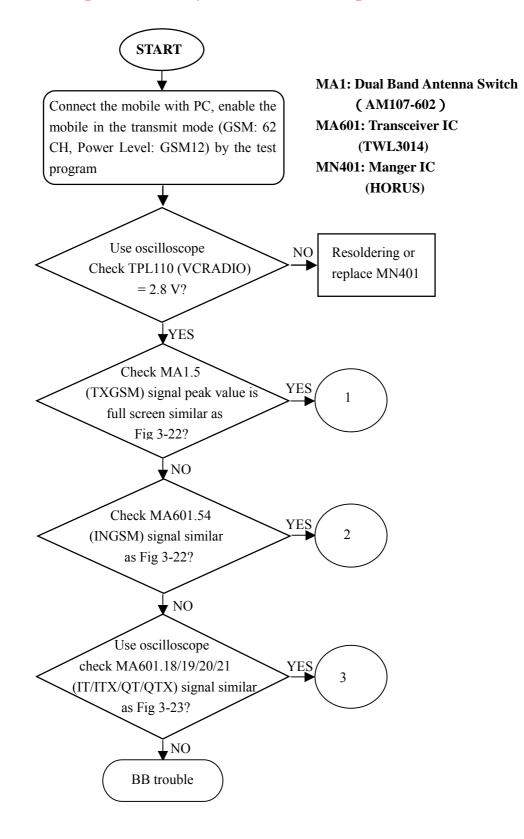
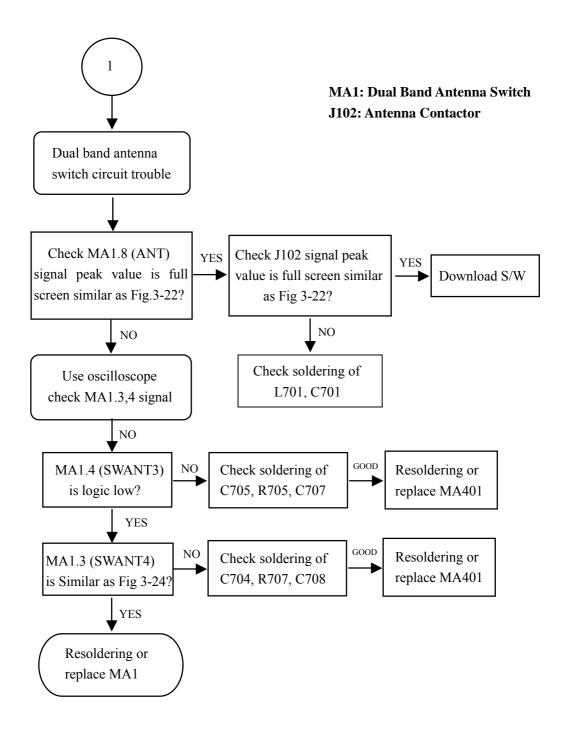


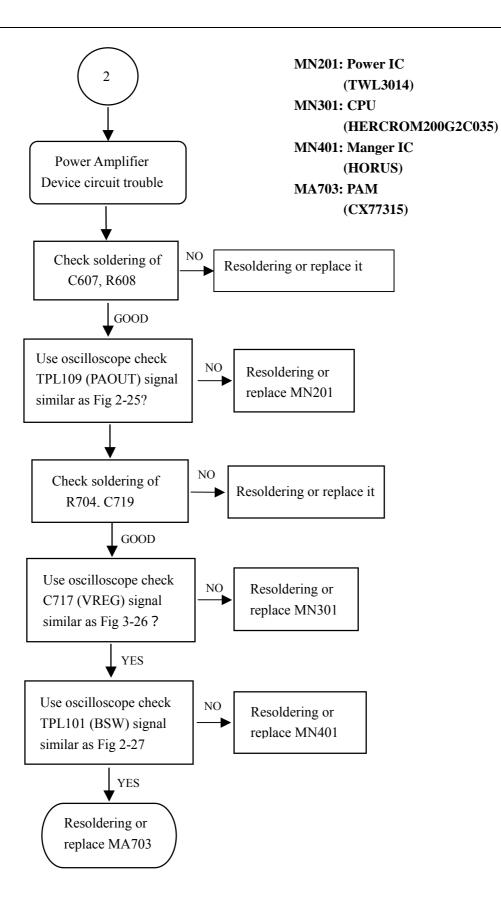
Figure 3-19 User Interface Window

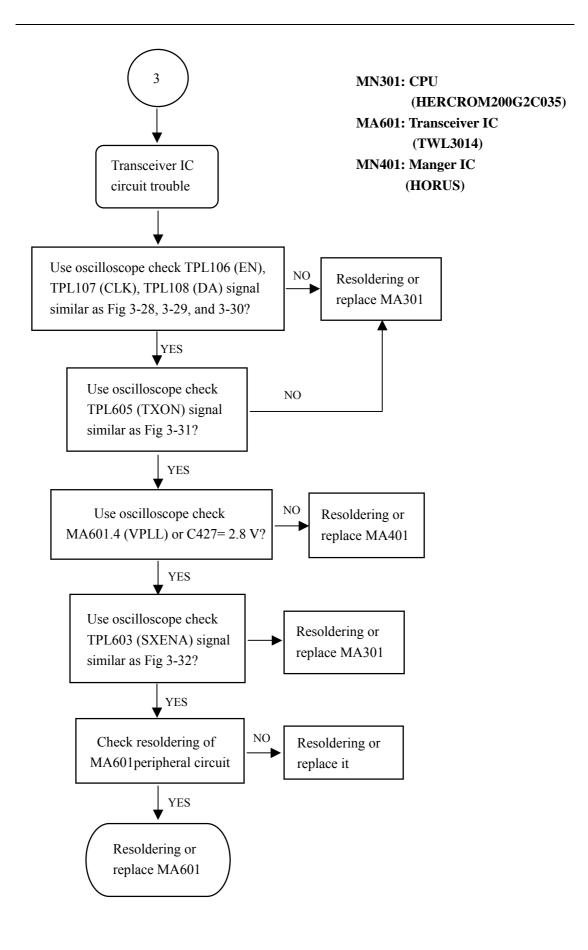
(c) Software setup

Execute Reglman.exe. And then select the" options" Menu. A table will be displayer as shown in Fig 3-19.


Then choose a correct serial port, serial port speed is "56000", Time-out is "1000"ms, Max numbers of retries is "1".


Communic	ation s	etup (R 🔀
RS232 C	Com	Speed 56000 💌
Time-Out	1000	ms
Retries	1	Max numbers of retries
		<u>OK</u>


Figure 3-19 Communication Setup


(d) Test Procedure

(Used Spectrum Analyze check when no specialize)

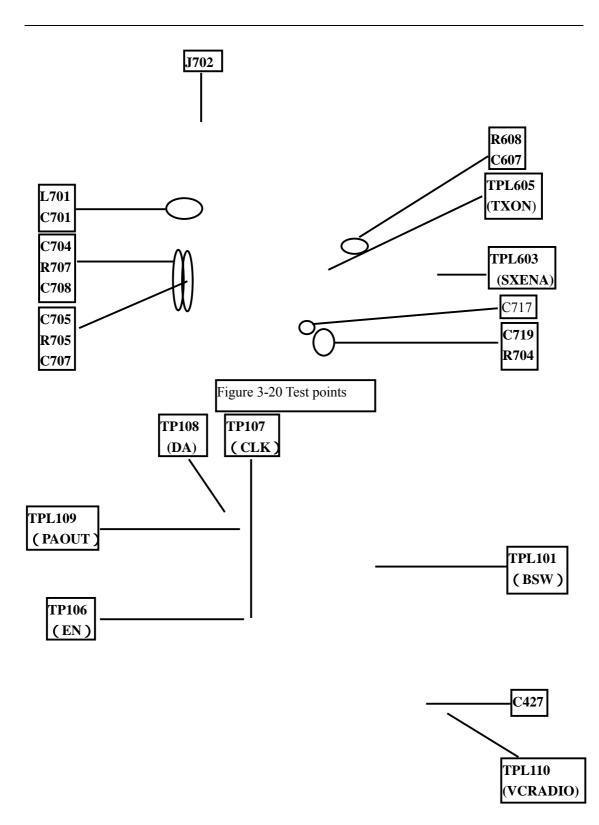


Figure 3-21 Test Point

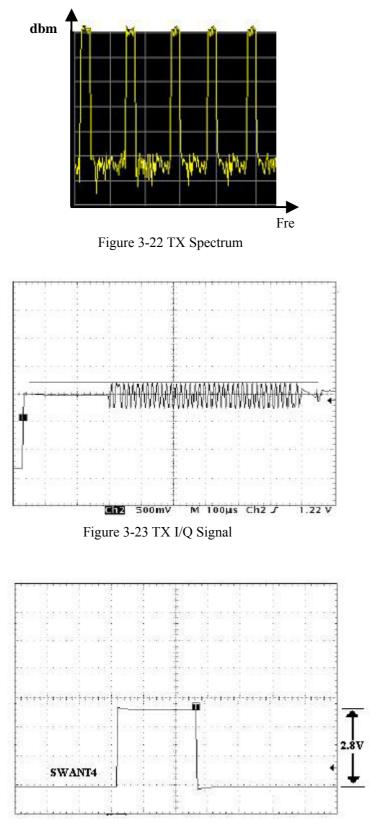


Figure 3-24 Antenna S/W control voltage in EGSM-TX

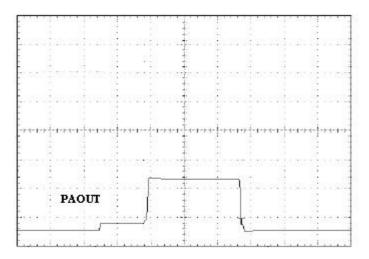
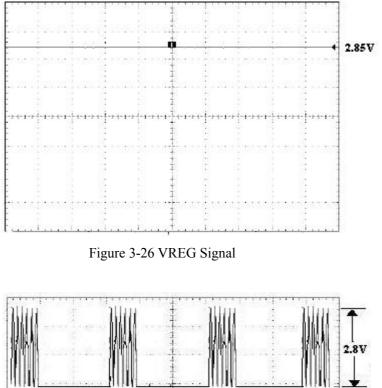



Figure 3-25 PAOUT Signal (EGSM TX Level=12)

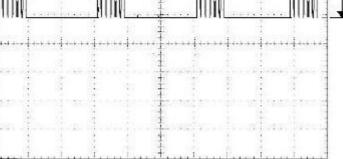


Figure 3-27 BSW Signal (EGSM)

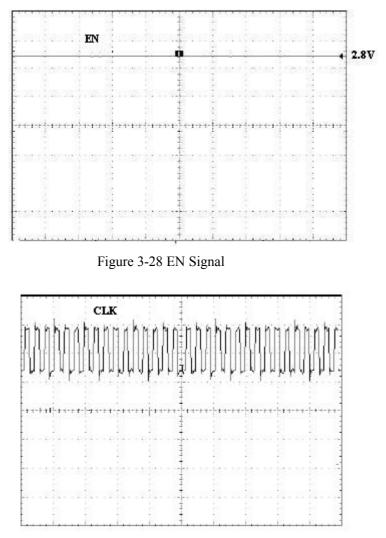


Figure 3-29 CLK Signal

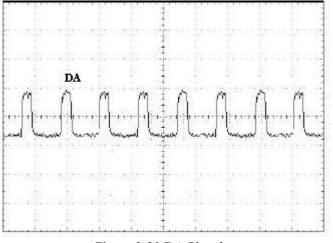


Figure 3-30 DA Signal

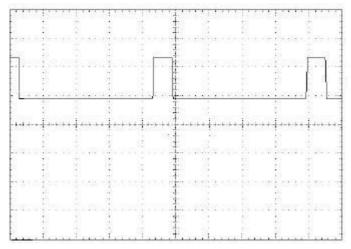
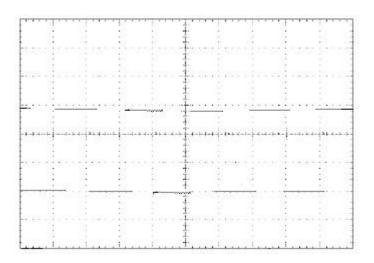
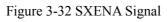
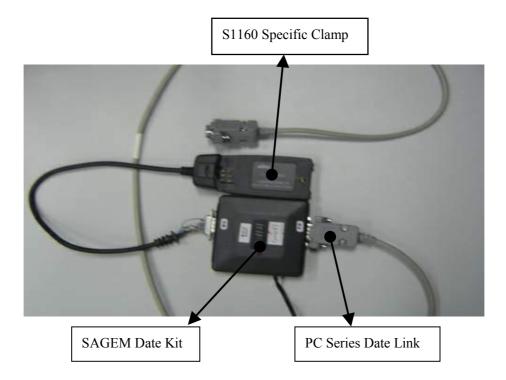




Figure 3-31 TXON Signal

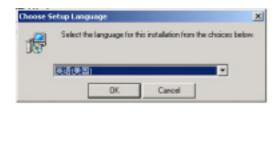

4. Download S/W

4.1 General Purpose

This document gives a guideline for upgrading software of S1160.

4.2 Download Equipment

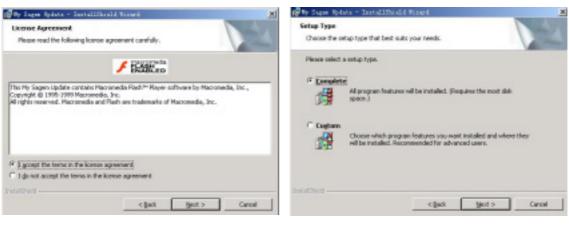
- 1) Desktop or Notebook PC
- 2) PC Series Date Link
- 3) SAGEM Date Kit
- 4) S1160 Specific Clamp
- 5) Download Monitor program
- 6) S1160 mobile phone


Caution

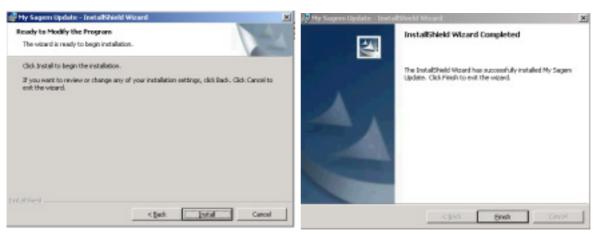
You must use the SAGEM Date Kit, S1160 Specific Clamp and UART Download Monitor program that are provided from BIRD. Otherwise downloading process won't properly.

4.3 Software Installation

A.Unzip S1160 UART Download monitor program (S1160.zip) in PC.


B. Execute MSU2.11 Bird.exe. And then select the correct language

C. Press "next" button.


👹 My Sagen Update - Insta	Isheeki Wizard	×
2	Welcome to the InstallShield Wizard for My Sagem Update	
	The Install/HeldR1 Wizerd will allow you to modify, repair, or remove My Sagen Update. To continue, disk flexit.	
4		
	cjus. Med 5 Canol	

- D. Choose "Modify", and press "Next" button.
- E. Press "next" button

F. Press "Install" button.

G. Finally press "Finish"

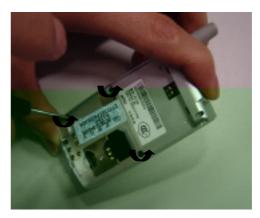
1.2 Download Procedure

A. Connect the PC and mobile with PC Series Date Link, SAGEM Date Kit,S1160 Specific Clamp B. Execute "My Sagem Update", a table will be displayed

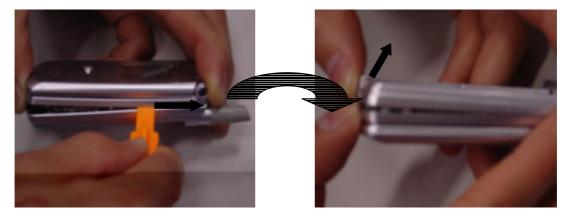
C. Choose a correct serial port, choose Automatic Download Mode, choose Manual Mobile Software Update Selection, and then click "software to download" to choose the target S/W that the latest one.

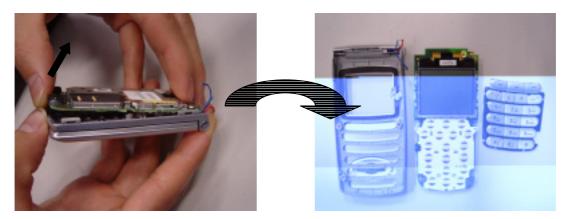
E Bylingen Belleter 2, 11, 3, 0	8	E articles	date 2.11.1	1.0		8
forial her her: 0001 ¥	Sectional Bola	11.11	12			28
Rebrie Defrages Sphere Defraction C Antonalis W Banal <u>Editors in Arcelon</u> Varies antones DITENTITY PERSONNAL AND ALL PROPERTY (PROCESS Prime in which, makers your achile in plaget and y thompst.	-					
			209-5 (d) 209-5 (d)	August and an articles, a	• 000000	E.A
<u></u>	-9-00 2 00.0 000			12-TO[T-TO]	**	410

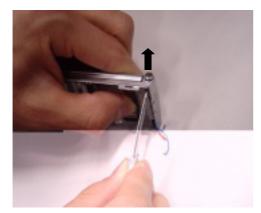
D. Click on " $(\overline{r}-\underline{F}\underline{w})$,", and then if the downloading procedure is succeeded, you can see the


following window

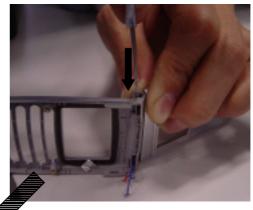
Clodate	×		×
Information :		Information :	- 20
Upload in progress		Mobile reference making it : BTOLDES. Indice of update file it :	
	1	Reh resing	- 201
Turning! The new nefficace update could last short 8 minuter. Eleme vect The programber could be long shile for minutes.		Turning! The new noffware update could last about 8 minutes. Finese volt The programmer could be hang while for minutes.	
Debute 1/ XIII (1811) and there 01. 18. Door recent from the Information : Multi-reference making in : 20001005. Indice of update file in :	×		
Turning! The new software update could hast down 8 minutes. House welt The programming could be long shills for minutes.			


5. Disassembly Instruction


One cross screwdriver, one tweezers, one plastic screwdriver, one sharp awl.

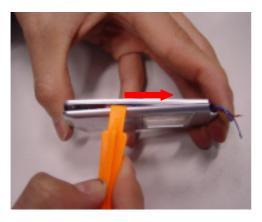

1.Removing screws.

2. Use plastic screwdriver to slide and open the gap between front and rear covers, and detach them carefully with both hands.



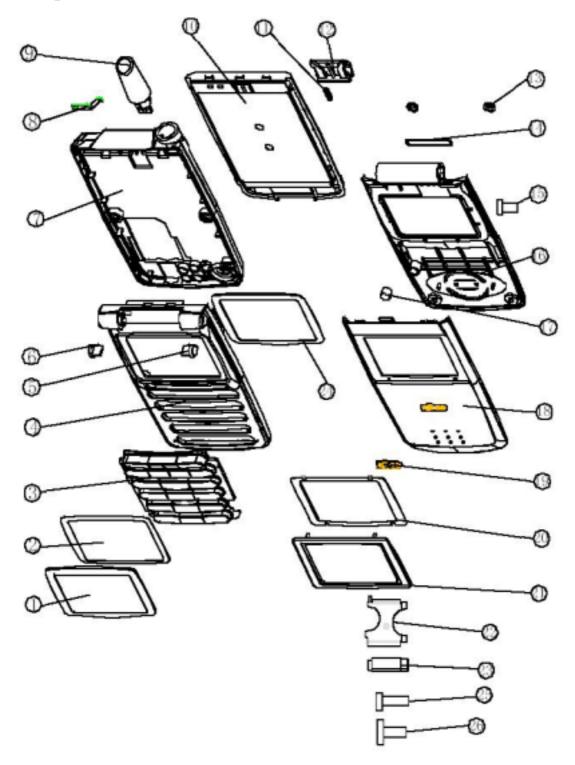
3.Remove the PCB and keypad

4. Take out right hinge deco with sharp awl.



5.Push away the hinge to remove the folder

6.Detach screw caps by a pin, and Removing screw.


7.Use a plastic screwdriver to slide and open the gap between the folders. Then detach them carefully with both hands.

8. Finally depart the speaker carefully

6. Exploded View

Level	Description	Level	Description
1	Main Window	14	Speaker Deco
2	Main Window Tape	15	Screw M1.6*2.9
3	Keypad	16	Flip Lower
4	Main Front Cover	17	Magnet
5	Right Hinge Deco	18	Flip Upper
6	Left Hinge Deco	19	BIRD-Deco
7	Main Back Cover	20	Flip Window Tape
8	Antenna Connector	21	Flip Window
9	Antenna	22	SIM Lock
10	Battery	23	Hinge
11	Battery Lock Spring	24	Main LCD Poron
12	Battery Lock	25	SCR M1.6*4.8
13	Flip Screw Pad	26	SCR M2.0*4.1